Multiscale Modeling of Polycrystalline NiTi Shape Memory Alloy under Various Plastic Deformation Conditions by Coupling Microstructure Evolution and Macroscopic Mechanical Response

نویسندگان

  • Li Hu
  • Shuyong Jiang
  • Tao Zhou
  • Jian Tu
  • Laixin Shi
  • Qiang Chen
  • Mingbo Yang
چکیده

Numerical modeling of microstructure evolution in various regions during uniaxial compression and canning compression of NiTi shape memory alloy (SMA) are studied through combined macroscopic and microscopic finite element simulation in order to investigate plastic deformation of NiTi SMA at 400 °C. In this approach, the macroscale material behavior is modeled with a relatively coarse finite element mesh, and then the corresponding deformation history in some selected regions in this mesh is extracted by the sub-model technique of finite element code ABAQUS and subsequently used as boundary conditions for the microscale simulation by means of crystal plasticity finite element method (CPFEM). Simulation results show that NiTi SMA exhibits an inhomogeneous plastic deformation at the microscale. Moreover, regions that suffered canning compression sustain more homogeneous plastic deformation by comparison with the corresponding regions subjected to uniaxial compression. The mitigation of inhomogeneous plastic deformation contributes to reducing the statistically stored dislocation (SSD) density in polycrystalline aggregation and also to reducing the difference of stress level in various regions of deformed NiTi SMA sample, and therefore sustaining large plastic deformation in the canning compression process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermo-mechanical behavior of shape memory alloy made stent- graft by multi-plane model

Constitutive law for shape-memory alloys subjected to multi-axial loading, which is based on a semi-micromechanical integrated multi-plane model capable of internal mechanism observations, is generally not available in the literature. The presented numerical results show significant variations in the mechanical response along the multi loading axes. These are attributed to changes in the marten...

متن کامل

An image-based method for modeling the elasto-plastic behavior of polycrystalline microstructures based on the fast Fourier transform

An efficient full-field method of computing the local and homogenized macroscopic responses of elasto-plastic polycrystalline microstructures based on the fast Fourier transform (FFT) algorithm is presented. This approach takes realistic microstructure images as the input and estimates the mechanical response/properties of polycrystal microstructures under periodic boundary conditions without r...

متن کامل

Dissimilar laser welding of NiTi shape memory alloy to austenitic stainless steel archwires

In this research, dissimilar welding of NiTi shape memory alloy to AISI 304 austenitic stainless steel Archwires was investigated. For this purpose, common straight orthodontic archwire with rectangular cross-section and dimensions of (0.635 × 0.432 mm) were selected and the laser welding technique was used to connect the wires. The microstructure, chemical composition and phasesin the weld zon...

متن کامل

Dissimilar laser welding of NiTi shape memory alloy to austenitic stainless steel archwires

In this research, dissimilar welding of NiTi shape memory alloy to AISI 304 austenitic stainless steel Archwires was investigated. For this purpose, common straight orthodontic archwire with rectangular cross-section and dimensions of (0.635 × 0.432 mm) were selected and the laser welding technique was used to connect the wires. The microstructure, chemical composition and phasesin the weld zon...

متن کامل

Micro-to-Meso Scale Limit for Shape-Memory-Alloy Models with Thermal Coupling

Modeling of shape-memory alloys represents a multiscale problem due to occurrence of martensite/austenite phase transformation and a microstructure in the deformation gradient typical for martensitic phase. Inspired by relaxation in static situation, a limit passage between two modeling scales, called microand meso-scales, is performed for the corresponding evolution variants with considering a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017